

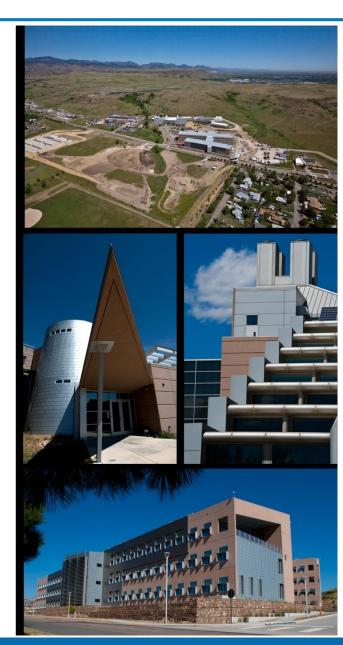
NREL's Mission



NREL R&D Locations

South Table Mountain

National Wind Technology Center


"Main Site"

"Wind Site"

Laboratory Snapshot

Only National Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy

- Leading clean-energy innovation for 34 years
- 1740 employees with world-class facilities
 - Another 500 students, contractors, etc.
 - Employees from 70 different countries
- Annual budget ~ \$312M
- Campus is a living model of sustainable energy
- Owned by the U.S. Department of Energy
- Operated by the Alliance for Sustainable Energy LLC

Scope of NREL's Mission

Residential **Buildings**

Commercial **Buildings**

Personal and Commercial **Vehicles**

Renewable Energy

Solar

Wind and

Water

Biofuels

Hydrogen

Geothermal

Fuels & Vehicles-Related Technologies

Electricity Integration

Grid **Infrastructure**

Distributed

Energy

Interconnection

Battery and

Thermal Storage

Electric Transportation

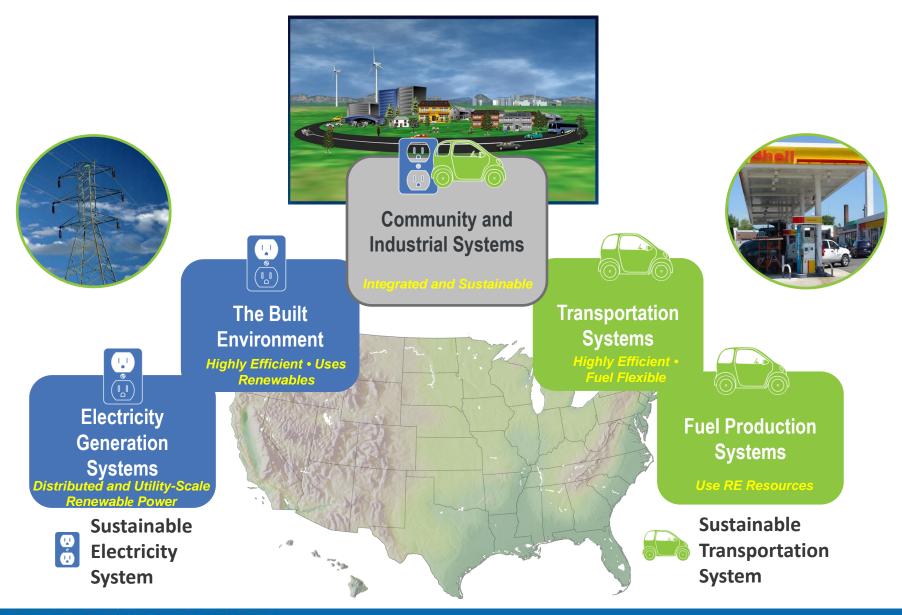
Private Industry

Federal Agencies

Defense Dept

State/Local Govt

International


Underpinned with Basic Science Research

Photoconversion

Computational Science

Systems Biology

Focusing NREL's Roles on "Systems"

NREL Philosophy → Partnerships

- NREL has more than 300 active partnering agreements*
- Roughly 50% our Cooperative R&D Agreements (CRADAs) are with small businesses and 25% with large businesses
- More than 40% of our Work for Others (WFO) agreements are with Federal, State or local governments and 25% are with businesses

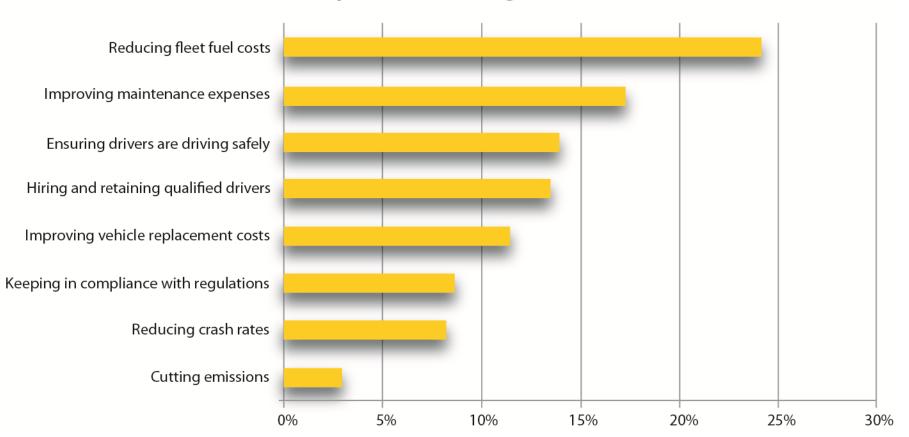
NREL's Sites - Leading by Example

• NREL Onsite Renewable Electricity -- PV > 4 MW, Wind > 5 MW

Renewable Fuel Heating Plant
-- displaces 70% of natural gas use

Science and Technology Facility
-- first U.S. Federal LEED Platinum building

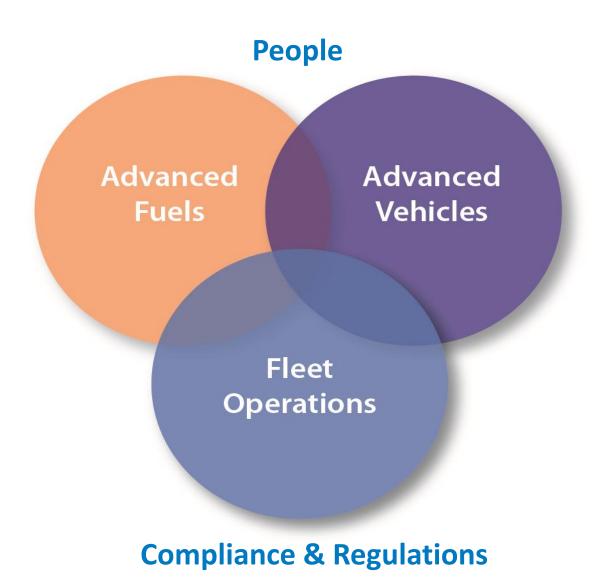
Vehicle Fleet -- >75% alternatively fueled


Research Support Facility

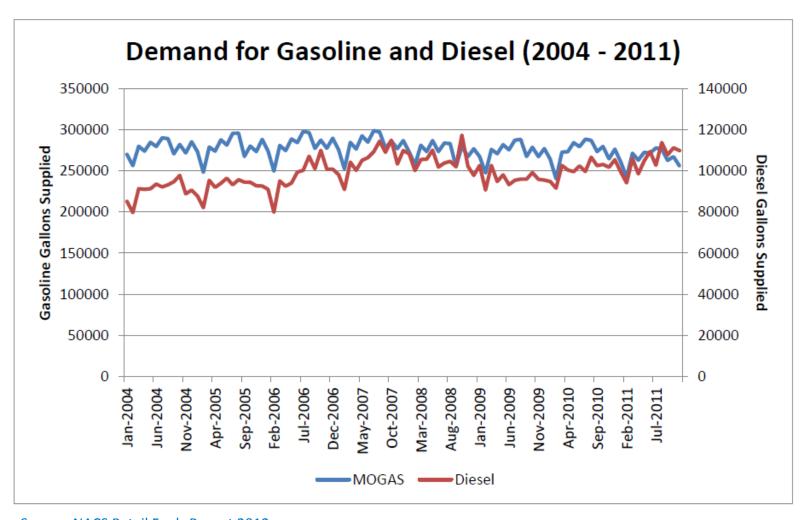
net-zero energy (1,250 personnel in 330,000 ft²)

Setting Priorities and Overcoming Challenges

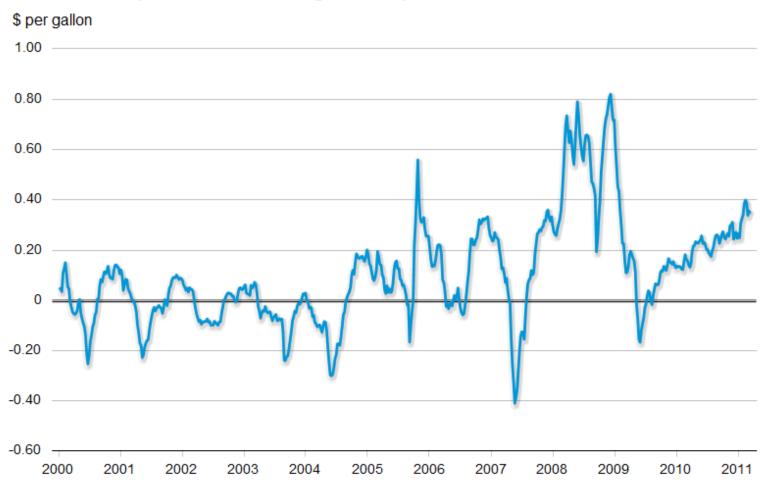
Most Important Challenge for 2013



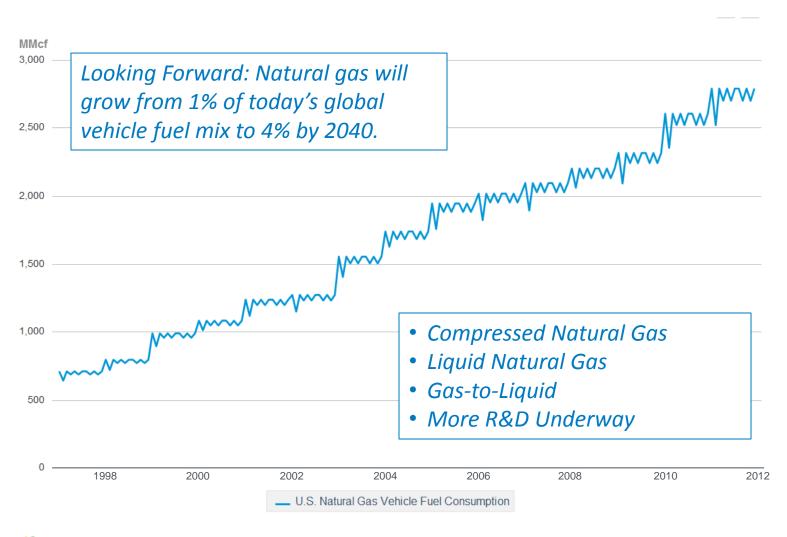
Source: GreenRoad's Fleet Leader 2013 Outlook Courtesy of Automotive Fleet; December 11, 2012 (www.automotive-fleet.com)


One Size Does NOT Fit All

NREL's Role in Making Calculated Decisions

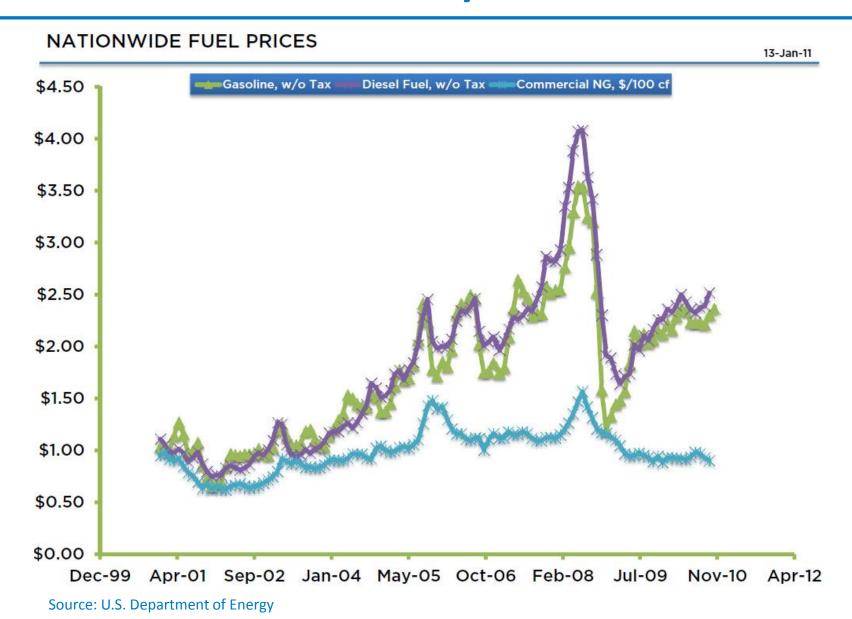

Intersection of Gasoline and Diesel Demand

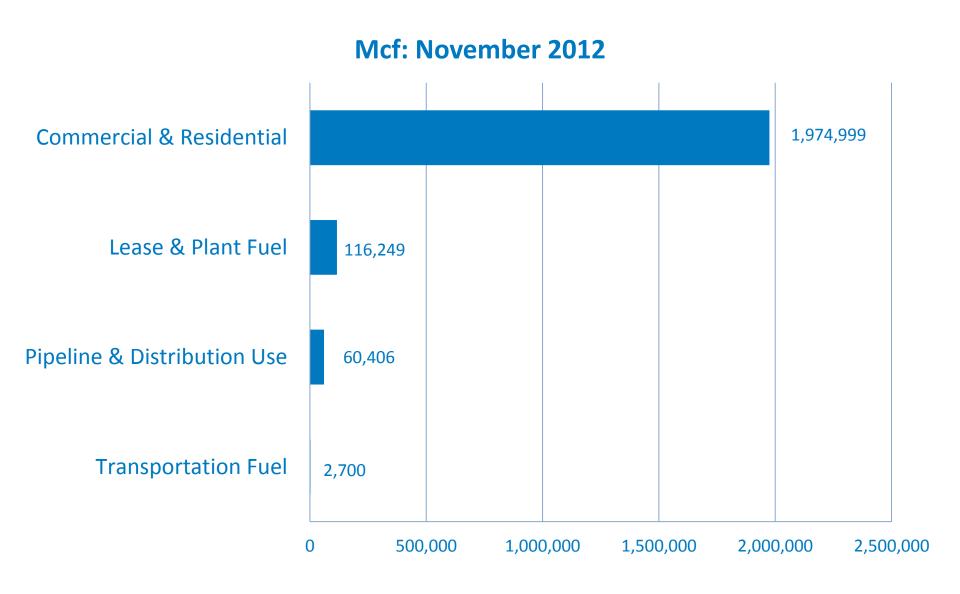
Source: NACS Retail Fuels Report 2012


Diesel Retail Prices Outpace Gasoline

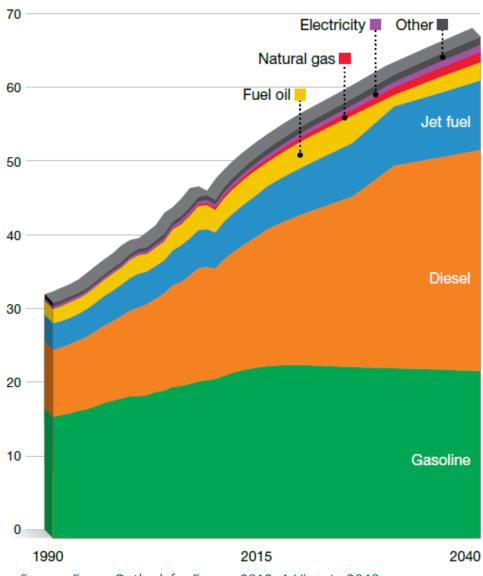
Retail diesel price minus retail gasoline price

Source: U.S. Energy Information Administration, Weekly Retail Gasoline and Diesel Prices


The Rise of Natural Gas Use in Transportation


Source: U.S. Energy Information Administration

Natural Gas Price Volatility vs. Petroleum


NATIONAL RENEWABLE ENERGY LABORATORY

U.S. Natural Gas End Consumption

World Transportation Fuel Demand by Type

Source: Exxon Outlook for Energy 2012: A View to 2040

Spectrum of Advanced Biofuel Technologies

Near Term Ethanol: Grain or cellulosic material

Biodiesel: Transesterified vegetable and seed oils

Green Diesel: Hydrogenated fats, waste oils, or virgin oils

Other Fermentation Products: Butanol, acetates, lactates, etc.

Pyrolysis Liquids: Alternative feedstock to refinery

Synthesis Gas: Fischer-Tropsch liquids, methanol, dimethyl ether, or mixed alcohols.

Algae-Derived Fuels: Source of triglycerides and carbohydrates

Long Term

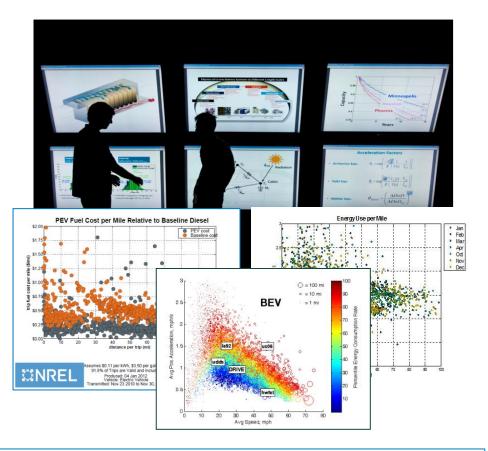
Hydrocarbon Fuels: From hydrogenation or produced insitu.

Looking Beyond Liquid Fuels

Vehicle technologies are advancing beyond liquid fuels, like these electric hybrids.

Electric vehicles, however, come with their own challenges.

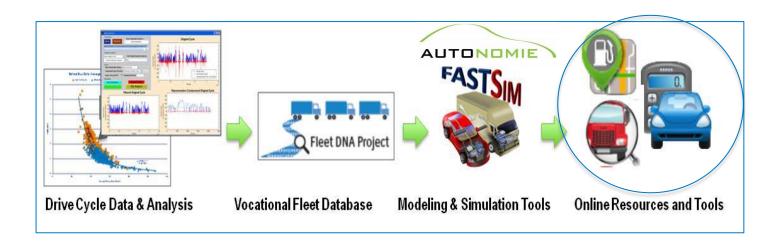
Let's Talk Operations


NREL Approach to Support Fleet Operations

- Analyze Your Fleet: Obtain data to deeply understand your fleet. How are you using your fleet now; What do you really need your fleet to do?
- 2 Analyze Your Options: Simulate potential fuel and vehicle technology applications against captured duty cycles.
- Select Your Solution Portfolio: Understand what is right for entire fleet, depot, or route.

Background:

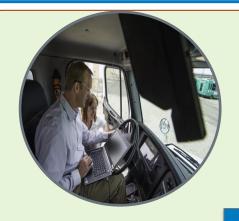
Lots of Work by the DOE and National Labs to Collect, Analyze and Report on Newly Deployed Advanced Technology

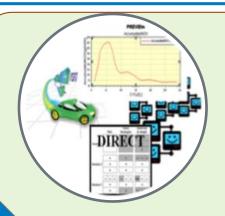


Buy it, then try it: Evaluations of newly deployed technology are very useful, but is a backward looking approach

Try it before you buy it. Simulate: Evaluations could also be forward lookingbut good data is needed for accurate assessment.

Refined Data to Make Informed Decisions




Drive Cycle / Duty Cycle Data

- speed
- acceleration
- grade
- miles, hours driven
- power take off / aux loads
- Operating Condition Data
 - temp, humidity, etc.
 - payload

- Vocational Analysis
 - route / fleet averages
- Situational Modeling & Simulation
 - sensitivity studies
 - placement optimization
 - expected performance
- On-Line Tools
 - Clean Cities
 - Alternative Fuels Data Center

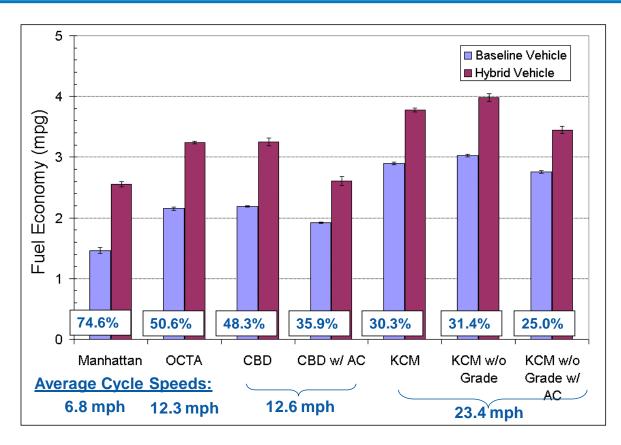
An Approach to Assess New Technology

Collect In-Use Data:

- Acquire Field Data
- Process Data:
 - DRIVETM
 - FAT (Fleet Analysis Tool)
- Compile & Summarize:
 - (Fleet DNA

Analyze and Simulate:

- Utilize User Specific Field Data
- Vehicle Simulation:
 - FASTSim
 - Autonomie
- Benefit Analysis:
 - best technology for specific application


Validate in Laboratory:

- Validate field data in a controlled setting
- Quantify emissions and fuel consumption
- Explore limits, assess changes to system

Effects of Variable Duty Cycle:

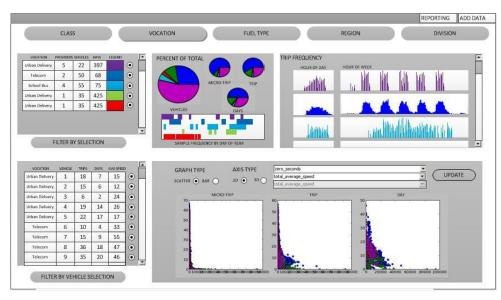
- 1. Fuel economy variation
- 2. Component life variation
- 3. Life cycle costs/payback
- 4. Placement of vehicles for maximum ROI

<u>Understand duty cycle =</u>
<u>Understand right</u>
<u>technology for application</u>

Example: HEV Bus Fuel Economy Improvements

<u>Drive cycle important to assess technologies such as:</u> aero devices, low rolling resistance tires, engine sizing, transmission options, light-weighting, battery usage, driver feedback, etc.

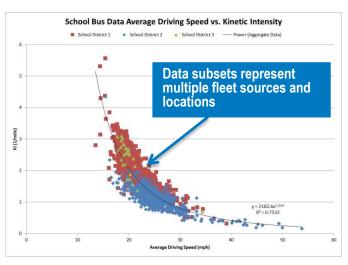
Understanding Vocational Behavior: Fleet DNA



A vocational data base of vehicle use information: Phase 1 and Phase 2

Phase 1: Pre-Sorted data sets

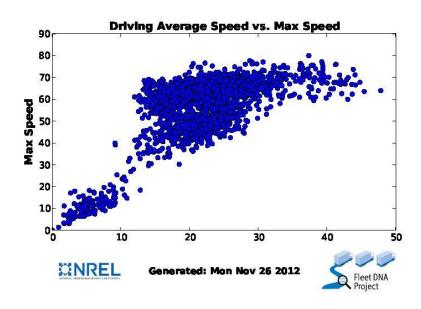
Phase 2: Sortable Data Sets


User can custom sort and graph:

- Class
- Vocation
- Fuel Type (or drivetrain)
- Region (4)
- Sub-region (based on census map)

Understanding the Big Picture: Fleet DNA

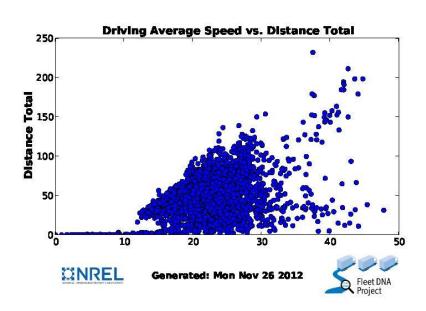
- DOE funded, NREL in partnership with ORNL
- 20+ high value metrics / data products available for each vocation
- Provides reference data for industry drivecycle development
- OEMs: better understanding of customer use profiles
- Fleets: information on how to achieve the maximum ROI from technology investment
- Funding Agencies: optimize impact of financial incentive offers
- R&D Activities: data source for modeling and simulation.


Data: Aggregated and Anonymous Fleets Not Identified!

Preliminary Participation:

- NTEA / GTA
- DOE
- SCAQMD
- CARB
- ORNL

- Calstart
- Zonar
- Many, Many
 Fleets and
 OEMS


Example Data Output of Fleet DNA: Phase I

Visualizations show data variability

Data analysis enables calculated decision making

Data Products to visualize and calculate vehicle use patterns

Data Sets

Available

- Class 4-6 Delivery Vans (parcel, food, uniform)
- Class 3-4 Light Aerials (telecom service)
- Class 5-6 Aerial (utilities)
- Class 3 Service Vans (telecom)
- Class 8 Tractor / Trailer (beverage delivery)
- Class 6 Box Trucks (in-city delivery)
- EV MD Delivery Vans (multiple uses)

Acquired, Coming Soon

- Class 8 OTR Tractor Trailers
- Transit Buses
- Shuttle Buses (airport, specialty)
- Refuse Trucks (multiple types)
- Tow Trucks

Pursuing

- Class 8 OTR Tractor
 Trailers
- Transit Buses
- Shuttle Buses
- Refuse Trucks
- Tow Trucks
- High PTO Use Work Trucks

DOE Data Priorities:

- 1) National Fuel Consumption
- 2) Payback / ROI Success
- 3) Scalable or Transferable technology

Required Data

Parameter	Frequency	Source	Required	Desired
Time	1 hz	CAN / J1939	x	
Date	1 hz	CAN / J1940	x	
Vehicle ID	1 / day	CAN / J1941	x	
Vehicle Speed (MPH)	1 hz	CAN / J1942		x
Engine Speed (RPM)	1 hz	CAN / J1943		x
Engine Mode (on/off)	1 hz	CAN / J1944		x
Instantaneous Fuel Usage (gram)	1 hz	CAN / J1945		x
Cumulative Fuel Usage (litre)	1 hz	CAN / J1946		x
PTO Engage (y or n) if applicable	1 hz	CAN / J1947		x
PTO % (if applicable)	1 hz	CAN / J1948		х
Elevation	1 hz	CAN / J1949	x	
GPS Latitude	1 hz	GPS	х	
GPS Longitude	1 hz	GPS	x	
GPS HDOP	1 hz	GPS	x	

Typical data required from fleets for inclusion into Fleet DNA

- may vary by application / situation
- other data can be useful if available and needed: torque demands, ambient temp, gear, etc....

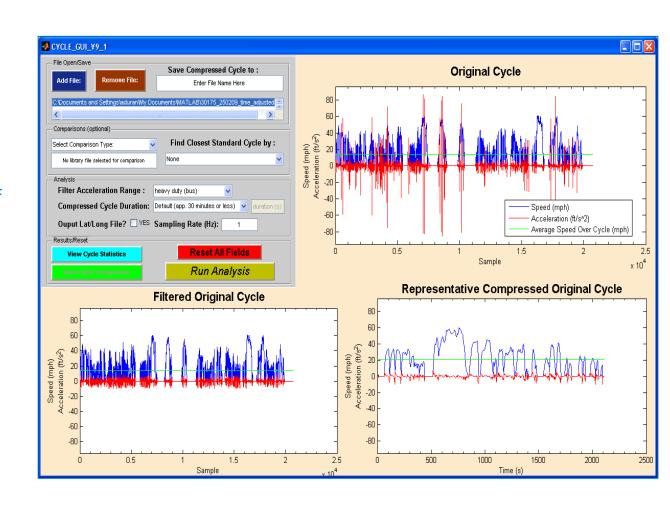
Hardware Requirements / Utilized

NREL hardware:

- gathers basic drive cycle data + additional if desired
- TSI 747 Pro GPS only units

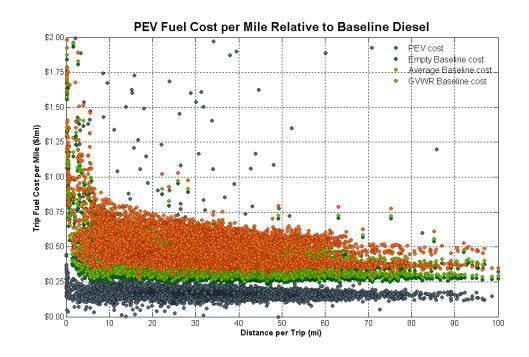
Other Options:

- Use Existing Telematics leverage large scale, long term tracking efforts
- Fleet Analysis + Telematics providers for in depth and specialized short term data capture



Data Analysis: Drive Cycle Data

Drive-cycle Rapid Investigation, Visualization and Evaluation Tool (DRIVE)

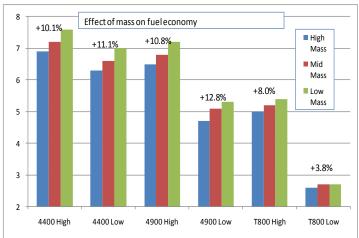

- Created to help fleets and OEMs understand vehicle usage for proper vehicle placement, design and testing
- Combines large amounts (days or weeks of usage) of user data, filters, creates new cycles
- Integrated with Fleet DNA for public use
- Quickly processes and analyzes data :
 - over 150 metrics
 - histograms
 - scatter plots
 - Creates custom cycle
 - Recommends standard cycles

Data Analysis: Simulation

Future Automotive Systems Technology Simulator (FASTSim)

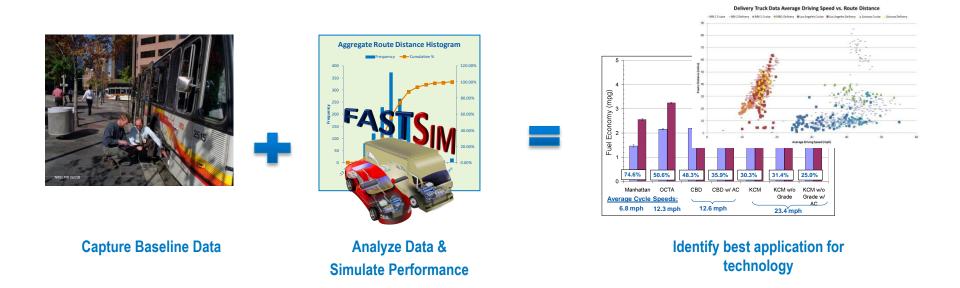
- Vehicle modeling tool to similar to Autonomie
- FastSim is well suited for conducting large data sweeps
 - short run time in accessible Excel environment
 - Validated performance output: fuel economy and cost results

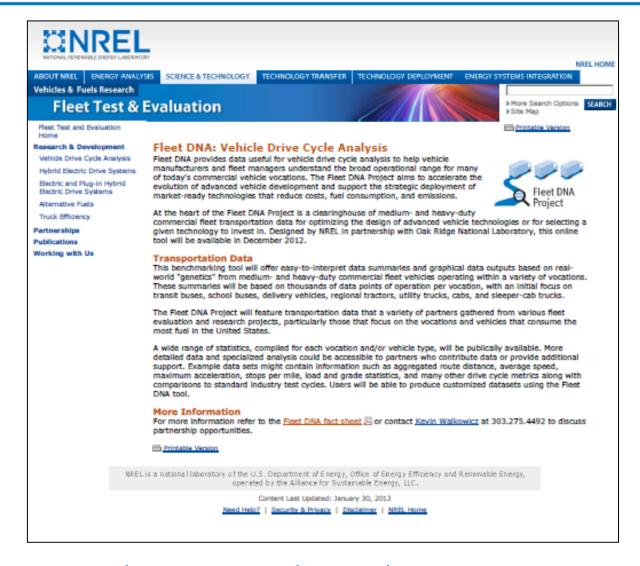
Example Use: Fleet DNA & the GTA




GTA: membership with interest in improving vehicle efficiency

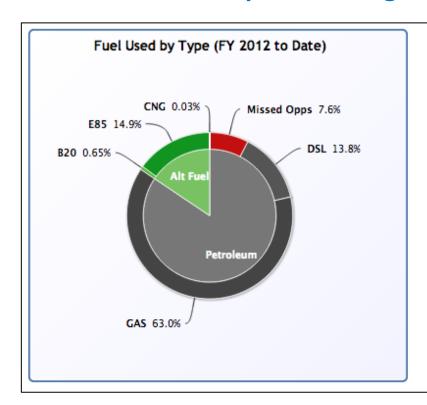
Fleet DNA: DOE supported database and analysis of technology

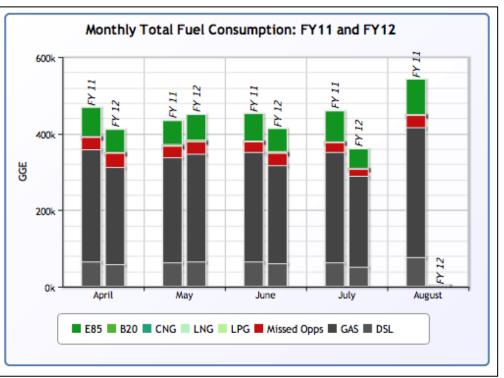

- GTA identifies & recruits interested fleet /technology for data analysis
- Fleet DNA provides drive cycle analysis back to data provider
- Fleet DNA performs simulation of vocational data set to assess benefit of technology for the specific usage patterns:
 - Aero improvement
 - Rolling Resistance
 - Engine sizing
 - Transmission options
 - Mass reduction
 - Driving behavior
 - HEV, EV options
 - Anti-Idle options
 - Natural Gas and Biofuel options



Summary: Calculated Decision Making

- 1. Provide Fleets, OEM's and Researchers with refined data and analysis of options specific to their needs
- 2. Create and maintain an accessible data base for public use
- 3. Recommend drive cycles
- 4. Identify most appropriate technologies for observed drive cycle data


Interested in Participating?



www.nrel.gov/vehiclesandfuels/fleettest/research_fleet_dna.html

FleetDASH Tour

- Available datasets provide Actionable Analytics/Business Intelligence
- Economies of scale: Standard platform for all Federal agencies
- Track fuel consumption throughout the year (30K ft. view)

https://federalfleets.energy.gov/FleetDASH/

FleetDASH Tour

Fleet Federal Supply Service; All Other ▼ Tag SEARCH Missed Opportunity Summary: 8 Missed Opportunities totaling 105 GGEs involving 4 vehicles.

 Vehicle/Transaction level detail reveals precisely WHO and WHERE

Vehicles in the Federal Supply Service; All Other fleet

		Pe	etroleum	Alt Fuels		This Month	Missed Opportunities	
Tag	Vehicle Fuel Type	Total GGE	% of Total Fuel Use	<u>Total GGE</u>	% of Total Fuel Use	Total Fuel Use (GGE)	Total GGE ▼	% of Total Fuel Use
G111377G ①	E85	44	100%	0	0%	44	41	93%
G414581G ①	E85	35	100%	0	0%	35	35	100%
G411680H ①	E85	14	100%	0	0%	14	14	100%
G107115H ①	E85	13	100%	0	0%	13	13	100%
<u>G410651E</u>	DSL	9	100%	0	0%	9	0	0%

Transactions corresponding to Tag# G111377G from the Federal Supply Service; All Other fleet

Station Name	<u>Address</u>	City	<u>State</u>	<u>Zip</u>	Fuel Type Purchased	<u>Date</u>	GGEs Purchased	Missed Opportunity ▼	Alternate Station
Circle K - 01947	5501 E GOLF LINKS RD	Tucson	AZ	85711	GAS	2013-02-01	4.05	Yes	Alternate Station
Giant Store 6615	6150 S KOLB RD	Tucson	AZ	85756	GAS	2013-02-04	12.81	Yes	Alternate Station
Giant Store 6615	6150 S KOLB RD	Tucson	AZ	85756	GAS	2013-02-08	14.23	Yes	Alternate Station
Giant Store 6615	6150 S KOLB RD	Tucson	AZ	85756	GAS	2013-02-14	10.18	Yes	Alternate Station

FleetDACLLT

Vehicle Details (G11-1377G)

Search

Federal Supply Fleet

Missed Opportunity

Vehicles in the

Tag
G111377G ①
G414581G ①
G411680H ①
G107115H ①
<u>G410651E</u> D

Transactions corre

Station Name

6615

Station Name	Address
Circle K - 01947	5501 E GOL LINKS RD
Giant Store 6615	6150 S KOLB
Giant Store 6615	6150 S KOLB RD
Giant Store	6150 S KOLB

Customer Detail:

RANDAL PATTERSON Federal Supply Service, All Other GSA, AREA PROPERTY OFFICE - 12575 NORTH SKODA DRIVE MARANA AZ 856530000 RANDAL.PATTERSON@GSA.GOV (520)4000308 - Ext:

Vehicle Detail:

Tucson

Tucson

Tucson

G11-1377G Tag: Make/Model: CHEVROLET - IMPALA Fuel Type: Ethanol / Unleaded Gasoline Vehicle Type: Sedan/St Wgn Midsize BOAC: 479142 SIN: 10B.11GA Garage Zip: 85653 Date Assigned: 4/28/08 Emergency Response: No Law Enforcement: No Avg Monthly Mileage: 537.00

Vehicle 1 of 15 on this page

85756

85756

85756

GAS

GAS

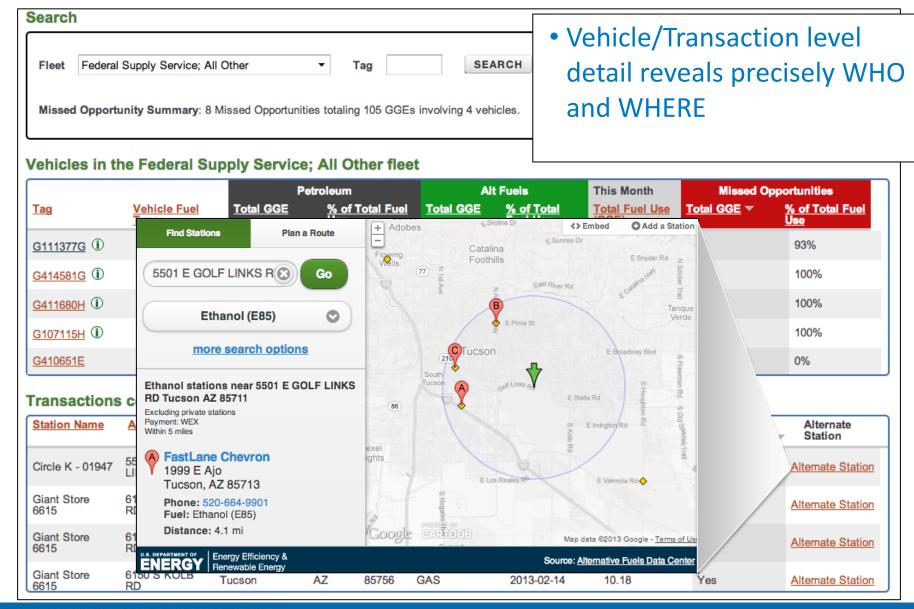
GAS

ΑZ

ΑZ

ΑZ

 Vehicle/Transaction level detail reveals precisely WHO and WHERE


<u>Total</u> Use	This Month Total Fuel Use (GGE)	Missed C Total GGE ▼	pportunities <u>% of Total Fuel</u> <u>Use</u>
	44	41	93%
	35	35	100%
	14	14	100%
	13	13	100%
	9	0	0%

	<u>:e</u>	GGEs Purchased	Missed Opportunity ▼	Alternate Station
	-02-01	4.05	Yes	Alternate Station
2013	3-02-04	12.81	Yes	Alternate Station
2013	3-02-08	14.23	Yes	Alternate Station
2013	3-02-14	10.18	Yes	Alternate Station

ply Service; All Other fleet

Address

FleetDASH Tour

Alternative Fuels Data Center

Ten Ways You Can Start to Cut Petroleum Use Right Now

There are hundreds of ways vehicle fleets and individual drivers can reduce petroleum use – and reap the benefits of lower emissions, cost savings, and energy security. Knowing where to start and selecting the options that work best for your needs and goals can be daunting, so the Alternative Fuels Data Center (AFDC) has compiled a list of actions you can take today, along with longer-term strategies for the future.

Behave yourself

Small changes in driver behavior can have big impacts on fuel economy. By breaking bad habits like jackrabbit starts, speeding, aggressive driving, and carrying unnecessary cargo, drivers can reduce fuel use by 10% to 20%. Check out the Driving Behavior section on the AFDC to find tips for fleets and individual drivers.

+ Go the Distance

Follow the leaders

Thousands of fleet managers, business owners, state and local officials, and other transportation decision makers across the country have blazed the trail toward petroleum-free transportation, so there's no need to reinvent the wheel. Before you undertake an initiative of your own, find out how others have successfully deployed alternative fuels, pushed the envelope on fuel economy, and achieved fleet efficiencies. The AFDC features dozens of case-studies, which you can search by geographic location, fuel or technology type, or fleet type.

+ Go the Distance

Explore the alternatives

When it comes to fueling your fleet, gasoline and diesel aren't the only options out there. It's possible to achieve emissions reductions and/or cost savings by using alternative fuels like propane, natural gas, electricity, biodiesel,

Connect with Clean Cities

If you're looking to leave petroleum in the rearview mirror, don't go it alone. The U.S. Department of Energy's Clean Cities program has nearly 100 local coalitions of fleets, fuel providers, businesses, utilities, and government agencies all

Don't sit idle

An idling vehicle gets 0 mpg. Yet drivers in the United States waste billions of gallons of fuel every year by running their engines while going nowhere. Reducing idling time has many benefits, including reductions in fuel use, fuel costs,

To Summarize . . .

- The Energy and Transportation Sectors are intersecting and overlapping
 - -- new frontier for Energy Systems Integration research
 - -- future diesel fuel prices are likely to be less predictable

- Additional Complexity to Manage: Diversified power train technologies
 - -- more challenging optimization problem
 - -- new tools are available to help match optimal solution to your application

